

VALLEY MUNICIPAL UTILITY DISTRICT NO.2

Address:

100 HIDALGO AVE. RANCHO VIEJO, TEXAS 78575

Phone: 956-350-4136 Fax: 956-350-4575

2022 Annual Drinking Water Quality Report

VALLEY MUNICIPAL UTILTY DISTRICT NO. 2 100 Hidalgo Avenue, Rancho Viejo, Texas (956) 350-4136

Special Notice for the ELDERLY, INFANTS, CANCER PATIENTS, people with HIV/AIDS or other immune problems:

Some people may be more vulnerable to contaminants in drinking water than the general population. Immunocompromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. The EPA/Centers for Disease Control and Prevention (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (1-800-426-4791).

Public Participation Opportunities

Date: July 18, 2023 Time: 9:00 AM Location: 100 Hidalgo Phone No: (956) 350-4136

Valley MUD #2 has regular board meetings on the third Tuesday of every month. These meetings are open to the public. To request an agenda, please call us.

Our Drinking Water Meets or Exceeds All Federal (EPA) Drinking Water Requirements

This report is a summary of the quality of the water we provide our customers. The analysis was made by using the data from the most recent U.S. Environmental Protection Agency (EPA) required tests and is presented in the attached pages. We hope this information helps you become more knowledgeable about what's in your drinking water.

SOURCES OF DRINKING WATER: The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water before treatment include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water run off, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

Where do we get our drinking water? Valley MUD # 2 has 3 sources of drinking water. Approximately 50% of our drinking water comes from the Resaca del Rancho Viejo which is fed by the Rio Grande river. Another 30% comes from a well on District property drilled into the gulf coast aquifer. This water is treated with a reverse osmosis system before it is blended with water from the surface water plant and pumped into the distribution system. The remaining water comes from the Southmost Regional Water Authority, a regional groundwater desalinization plant.

En Español

Este informe incluye información importante sobre el agua potable. Si tiene preguntas o comentarios sobre éste informe en español, favor de llamar al tel. (956) 350-4136 para hablar con una persona bilingüe en español.

The TCEQ completed an assessment of your water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sampling data. Any detections of this contaminants may be found in this Consumer Confidence Report. For more information on source water assessments and protection efforts at our system, contact Mr. Omar Martinez at (956) 350-4136 or write us at 100 Hidalgo Avenue, Rancho Viejo, TX. 78575

ALL drinking water may contain contaminants.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water, can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondary constituents are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

DEFINITIONS

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG)

The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL)

The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Treatment Technique (TT)

A required process intended to reduce the level of a contaminant in drinking water.

Action Level (AL)

The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ABBREVIATIONS

NTU -Nephelometric Turbidity Units

MFL -million fibers per liter (a measure of asbestos)

pCi/L -picocuries per liter (a measure of radioactivity)

ppm - parts per million, or milligrams per liter (mg/L)

ppb -parts per billion, or micrograms per liter (μ g/L) **ppt** -parts per trillion, or nanograms per liter

ppq -parts per quadrillion, or picograms per liter

About The Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

Inorganic Contaminants

Collection Date	Substance (UNIT OF MEASURE)	Highest Level Detected	Range of Levels De- tected	MCL	MCLG	Violation	Source of Constituent
2022	Arsenic (ppb)	6.9	3.4-6.9	10.0	0	Y	Erosion of natural deposits; Runoff from or- chards; Runoff from glass and electronics production wastes
2022	Barium (ppm)	0.0485	0.0485	2.0	2.0	N	Discharge of drilling wastes; Discharge from metal refineries; erosion of natural deposits.
2022	Fluoride (ppm)	0.29	0.29	4	4	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.
2022	Nitrate {measured as Nitrogen} (ppm)	0.08	0.06-0.08	10	10	N	Runoff from fertilizer use; Leaching from septic tank sewage; Erosion of natural deposits.
2022	Cyanide (ppb)	10	10	200	200	N	Discharge from plastic and fertilizer factories; Discharge from steel / metal factories.
2022	Selenium (ppb)	6.6	6.6	50	50	N	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharges from mines.
	Radioactive Contami- nants (Unit of Measure)	Highest Level Detected	Range of Levels Detect- ed	MCL	MCLG	Violation	Source of Constituent
2018	Combined Radium 226 & 228 (pCi/ L)	1.5	1.5-1.5	5	5	N	Erosion of Natural Deposits
2022	Xylenes (ppb)	0.5	0.5	10	10	N	Discharge from petroleum factories, Discharge from Chemical factories

MAXIMUM RESIDUAL DISINFECTANT LEVEL

Chlorine / Chloramine Residual Disinfection Byproducts

		/ =							
2	2022 Average Level of Quarterly data		Maximum Detected	Minimum Detected		MRDL	MRDLG		
Chlo	ramine	1	.76	2.12		1.30	4.0	<4.0	Disinfectant used to control microbes
	Contamin	ant	Highest Level	Range of Level	MCLG	MCL	Unit of Measure	Violation	Source of Contaminant
2022	Haloace (HAA5)	tic Acids	16.2	1.5 - 16.2		60	ppb	N	Byproduct of Drinking Water Disinfection
2022	Total Tri thanes	halome-	35.4	1 - 35.4		80	ppb	N	Byproduct of Drinking Water Disinfection

Year	Constituent	Average Level	Minimum Level	Maximum Level	MCL	Units of Measure	Reason for Monitoring	
2022	Chloroform	1.6	1.0	2.7	100	ppb	Unregulated contaminant monitoring helps EPA to determine where certain contaminants occur and whether it needs to regulate those contaminants	
2022	Bromoform	5.4	1.0	10.2	100	ppb		
2022	Bromodichloromethane	7.6	1.0	8.0	100	ppb		
2022	Dibromochloromethane	10.2	1.0	16	100	ppb		

Lead and Copper

Year	Constituent	MCLG	Action Level (AL)	90th Percentile	#Sites Over AL	Units	Violation	Source of Constituent
2021	Copper	1.3	1.3	0.0505	0	Ppm	N	Corrosion of household plumbing systems, erosion of natural deposits, leaching from wood preservatives.
2021	Lead	0	15	0	0	Ppb	N	Corrosion of household plumbing systems, erosion of natural deposits

Turbidity

Turbidity has no health effects. However, turbidity can interfere with disinfection and provide a medium for microbial growth. Turbidity may indicate the presence of disease-causing organisms. These organisms include bacteria, viruses, and parasites that can cause symptoms such as nausea, cramps, diarrhea and associated headaches.

	Limit (Treatment Technique)	Level Detected	Likely Source of Contamination		
Highest Single Measurement	1 NTU	.88 NTU	Soil runoff		
Lowest monthly % meeting Limit	0.3 NTU	96 %	Soil runoff		

Total Organic Carbon

The Percentage of Total Organic Carbon (TOC) removal was measured each month and the system met all TOC removal requirements set, unless a TOC violation is noted on this report.

COLIFORMS

What are coliforms?

Coliform bacteria are used as indicators of microbial contamination of drinking water because they are easily detected and found in the digestive tract of warm blooded animals. While not themselves disease producers, they are often found in association with other microbes that are capable of causing disease. Coliform bacteria are more hardy than many disease-causing organisms; therefore their absence from water is a good indication that the water is bacteriologically safe for human consumption.

The Total Coliform Rule requires water systems to meet a stricter limit for coliform bacteria. When coliform bacteria are found, special follow-up tests are done to determine if harmful bacteria are present in the water supply. If this limit is exceeded, the water supplier must notify the public by newspaper, television or radio.

Fecal coliform (mostly E-coli), is a portion of the coliform bacteria group originating in the intestinal tract of warm-blooded animals that passes into the environment as feces. Fecal coliform is often used as an indicator of the fecal contamination of domestic water supply.

Valley MUD #2 had zero positive test for total coliform in the year of 2022.

Secondary and Other Constituents - Not Regulated

Year (Range)	Inorganic Contaminants	Highest Level Detected	Range of levels detected	MCLG	MCL	Unit of measure	Likely Source of Constituent
2022	Aluminum	0.176	0.176		0.2	ppm	Abundant naturally Occurring Element
2022	Alkalinity Bicarbonate	87	87		NA	ppm	Corrosion of carbonated rocks such as limestone
2022	Calcium	42.8	42.8		NA	ppm	Abundant Naturally Occurring Element
2022	Chloride	150	150		300	ppm	Abundant naturally occurring element; used in water purification; byproduct of oil field activity.
2021	Copper	0.207	0.05-0.207		NA	ppm	Corrosion of household plumbing systems; erosion of natural deposits, leaching from wood preservatives
2022	Silver	0.01	0.01	0.01	0.01	ppm	Erosion of natural deposits
2022	Iron	0.01	0.01	0.01	.3	ppm	Erosion of natural deposits; iron or steel water delivery equipment or facilities.
2022	Magnesium	17.2	17.2		NA	ppm	Abundant naturally occurring element
2022	Manganese	0.001	0.001	0.001	0.05	ppm	Abundant naturally occurring element
2022	Nickel	0.0018	0.0018		NA	ppm	Erosion of Natural Deposits
2022	pH average	8.95	7.01-8.95		>6: 9<	Positive Hidrogn Ions	Corrosive measurement of water
2022	Sodium	128	128		NA	ppm	Erosion of natural deposits, byproduct of oil field activity.
2021- 2022	Sulfate	250	185-250	300	300	ppm	Naturally Occurring;, common industrial byproduct, byproduct of oil field activity
2021- 2022	Total Alkalinity	148	71-148		NA	ppm	Naturally occurring soluble mineral salts.
2022	Total Dissolved Solids	586	586	1000	1000	ppm	Total dissolved mineral constituents in water.
2022	Total Hardness as CaCO3	178	178		NA	ppm	Naturally occurring calcium
2022	Zinc	0.005	0.005	0.005	5	ppm	Moderately abundant naturally occurring element used in the metal industry.

State Water Loss Audit

In the water loss audit submitted to Texas Water Development Board for the time period of January through December 2022, our system lost an estimated 16,338,939 (7.85 %) gallons of water through main breaks, leaks and other causes. If you have any questions about the water loss audit please call (956)350-4136.

Help us keep the water safe!!

Valley Municipal Utility District is enforcing the state's Cross-connection and Backflow regulations. The Texas Commission on Environmental Quality (TCEQ) requires that any actual or potential cross -connections be protected from backflow. Residents are required to install a backflow preventer assembly to prevent contaminants from entering the public drinking water system. This will protect your water against any contamination.

Outdoor Faucets:

The ordinary garden hose is the most common way to contaminate the water supply! This can happen when one end of the garden hose is attached to an outdoor faucet (sill cock), and the other end of the hose connects to an aspirator type bottle. Insecticides or other chemicals in the aspirator bottle can be siphoned back into the drinking water supply. Or when filling a livestock watering trough and letting the garden hose just lay in the trough unattended. You can easily prevent the possibility of this type of contamination by ensuring there is an "air gap" between the watering trough and the garden hose, or by installing a *hose bib vacuum breaker*. This is a small, inexpensive device you can get at most hardware stores and simply attaches to a threaded water faucet.

Lawn Irrigation System:

You may have a lawn irrigation system. You will need a vacuum breaker backflow preventer to protect against lawn and pesticide chemicals from being drawn in from your lawn and back into the water supply. On a large number of lawn sprinkler installations the sprinkler head is below the ground level. Water which may have been in contact with fertilizers and weed killers can then be back siphoned through a leaky valve in to the potable water system. The two types of acceptable backflow preventers are the pressure vacuum breaker (pvb) or the reduced pressure zone (rpz).

Your Toilet:

When water leaves the drinking water supply system and flows into your toilet tank the water should be prevented from being drawn back into the water supply. The water in the toilet tank is often treated with cleansing chemicals that are not safe to drink. There is something you can do! Make sure an anti-siphon ballcock assembly is installed correctly in your toilet tank. This will protect against any back-siphonage.

